Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in nitksam@gmail.com

Numerical Methods - MA 207 Finite Differences

- 1. Evaluate $\Delta \tan^{-1} x$, $\Delta (e^x \log 2x)$, $\Delta (x^2 / \cos 2x)$.
- 2. Evaluate

$$\Delta \left[\frac{5x + 12}{x^2 + 5x + 16} \right],$$

interval of differencing being unity.

- 3. Find the successive differences of $f(x) = ab^{cx}$ and sum the first n differences.
- 4. Find the function (with suitable *h*) whose first difference is

(a) ax + b

(c) e^x

(b) $\sin x$

(d) e^{a+bx}

5. Prove that the operator Δ obeys the **index law**:

$$\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$$

where m and n are positive integers.

- 6. Evaluate $E^0 f(x)$, $\Delta(c)$ and E(c) where c is a constant.
- 7. True or false: If $\Delta f(x) = 0$, then either $\Delta \equiv 0$ or f(x) = 0.
- 8. True or false: $E^2 f(x)$ and $E^2 [f(x)]^2$ are identical.
- 9. An operator *T* is said to be **linear** if

$$T[af(x) + bg(x)] = aT[f(x)] + bT[g(x)],$$

where a, b are constants. Prove that the operators E and Δ are linear.

- 10. Prove that for all integral values of n, $f(a+nh) = \sum_{r=0}^{n} {n \choose r} \Delta^r f(a)$ with the help of the operators E and Δ .
- 11. If $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ $a_0 \neq 0$, then find $\Delta^n f(x)$. Obtain $\Delta^{25} \{(x-a)(x-b) \cdots (x-z)\}$ where the operand has only 25 factors and there is no factor of the type (x-x).
- 12. Prove that

$$e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x},$$

the interval of differencing being unity.

13. Prove that $y_n - y_0$ is the sum of all entries in the first difference column of the difference table for (x_i, y_i) , $0 \le i \le n$.

That is,
$$\sum_{x=0}^{n-1} \Delta y_x = y_n - y_0.$$

14. Prove that $y_4 = y_3 + \Delta y_2 + \Delta^2 y_1 + \Delta^3 y_1$.

- 15. Show that $y_4 = y_0 + 4\Delta y_0 + 6\Delta^2 y_{-1} + 10\Delta^3 y_{-1}$ if fourth and higher differences are zero.
- 16. Prove that

$$y_0 + y_1 + \dots + y_n = \binom{n+1}{1} y_0 + \binom{n+1}{2} \Delta y_0 + \dots + \binom{n+1}{n+1} \Delta^n y_0.$$

17. Prove the following identity

$$\sum_{x=0}^{\infty} y_{2x} = \frac{1}{2} \sum_{x=0}^{\infty} y_x + \frac{1}{4} \left(1 - \frac{\Delta}{2} + \frac{\Delta^4}{4} - \dots \right) y_0.$$

18. Find the sum of the series,

$$1.2 \Delta x^n - 2.3 \Delta^2 x^n + 3.4 \Delta^3 x^n - 4.5 \Delta^4 x^n + \cdots$$

the interval of differencing being unity.

19. Deduce the following:

(a)
$$\nabla \equiv 1 - E^{-1}$$

(b)
$$\Delta - \nabla \equiv \Delta \nabla = \delta^2$$

(c)
$$\Delta \equiv E^{1/2} - E^{-1/2}$$

(d)
$$\mu \equiv (1/2)(E^{1/2} + E^{-1/2})$$

(e)
$$(E^{1/2} + E^{-1/2})(1 + \Delta)^{1/2} \equiv 2 + \Delta$$

(f)
$$\Delta \equiv \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

(g)
$$1 + \delta^2 \mu^2 = \left(1 + \frac{\delta^2}{2}\right)$$

(h)
$$\mu^2 \equiv 1 + (1/4)\Delta^2$$

(i)
$$E\nabla \equiv \nabla E \equiv \Delta \equiv \Delta E^{1/2}$$
.

(j)
$$\mu = \frac{2+\Delta}{2\sqrt{1+\Delta}} + \sqrt{1 + \frac{\delta^2}{4}}$$
.

- 20. If $y = a(3)^x + b(-2)^x$ and h = 1, prove that $(\Delta^2 + \Delta 6)y = 0$.
- 21. Evaluate $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$.
- 22. Show that $\Delta\left[\frac{1}{f(x)}\right] = \frac{\Delta f(x)}{f(x)f(x+1)}$.
- 23. Prove that $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$.
- 24. Find the missing y_x values from the first differences provided.

	y_x	0	-	-	-	-	-
ĺ	Δy_x	0	1	2	4	7	11

- 25. Prove the following identities.
 - (a) $E \equiv e^{hD}$ (Hint: Taylor's series)
 - (b) $hD \equiv \Delta \frac{\Delta^2}{2} + \frac{\Delta^3}{3} \cdots$
 - (c) $hD \equiv \log(1 + \Delta) \equiv -\log(1 \nabla) \equiv \sinh^{-1}(\mu\delta)$
 - (d) $\nabla y_{n+1} \equiv h(1 + \frac{1}{2}\nabla + \frac{5}{12}\nabla^2 + \cdots)y'_n$.
- 26. Using the method of separation of symbols, prove the following identities:
 - (a) $y_x \Delta^n y_{x-n} = y_{x-1} + \Delta y_{x-2} + \Delta^2 y_{x-3} + \dots + \Delta^{n-1} y_{x-n}$.
 - (b) $y_1 x + y_2 x^2 + y_3 x^3 + \dots = \frac{x}{x-1} y_1 + \frac{x^2}{(1-x)^2} \Delta y_1 + \frac{x^3}{(1-x)^3} \Delta^2 y_1 + \dots$
- 27. Taking fifth order differences of y_x to be constant and given $y_0, y_1, y_2, y_3, y_4, y_5$ prove that

$$y_{2\frac{1}{2}} = \frac{1}{2}c + \frac{25(c-b) + 3(a-c)}{256}$$

where $a = y_0 + y_5$, $b = y_1 + y_4$, $c = y_2 + y_5$.

- 28. For any positive integer n, prove the following:
 - (a) $\Delta^r \binom{n}{n} = \binom{x}{n-r}, \quad r < n$
 - (b) $\Delta^{n}\binom{x}{n} = 1$.
- 29. Obtain the function whose first difference is $2x^3 3x^2 + 3x 10$.
- 30. If $y = \frac{1}{(3x+1)(3x+4)(3x+7)}$, evaluate $\Delta^2 y$. Also find $\Delta^{-1} y$.
- 31. If $y_0 = 3$, $y_{11} = 6$, $y_{12} = 11$, $y_{13} = 18$, $y_{14} = 27$, find y_4 .
- 32. If y_x is a polynomial for which fifth difference is constant and $y_1 + y_7 = -784$, $y_2 + y_6 = 686$, $y_3 + y_5 = 1088$, find y_4 .
- 33. Using the method of separation of symbols, prove that $y_0 + \frac{y_1}{1!}x + \frac{y_2}{2!}x^2 + \frac{y_3}{3!}x^3 + \cdots = e^x[y_0 + x\Delta y_0 + \frac{x^2}{2!}\Delta^2 y_0 + \frac{x^3}{3!}\Delta^3 y_0 + \cdots]$. Hence find the sum of the following series.
 - (a) $1^3 + \frac{2^3}{1!}x + \frac{3^3}{2!}x^2 + \frac{4^3}{3!}x^3 + \cdots \infty$
 - (b) $1 + \frac{4x}{1!} + \frac{10x^2}{2!} + \frac{20x^3}{3!} + \frac{35x^4}{4!} + \frac{56x^5}{5!} \cdots \infty$.
- 34. Prove that for any positive integer n,

$$[x]^n = (x - (n-1)h)[x]^{n-1}.$$

- 35. Express $2x^3 3x^2 + 3x 10$ in factorial notation by both the methods.
- 36. **Fill the blank:** The coefficient of the highest power of *x* ______(remains unchanged / may change) while transforming a polynomial to factorial notation.
- 37. If $f(x) = (2x+1)(2x+3)\cdots(2x+15)$, find the value of $\Delta^4 f(x)$.
- 38. Express the function

$$x^4 - 12x^3 + 24x^2 - 30x + 9$$

in factorial notation, the interval of differencing being unity.

39. Using factorial notation, obtain the function whose first difference is

$$x^3 + 4x^2 + 9x + 12.$$

- 40. Express $2x^3 3x^2 + 3x 10$ and its successive difference in factorial notation.
- 41. A second degree polynomial passes through (0,1), (1,3), (2,7) and (3,13). Find the polynomial.
- 42. Prove that $[x]^r[x rh]^n = [x]^{r+n}$.
- 43. Find the relation between α , β and γ in order that $\alpha + \beta x + \gamma x^2$ may be expressible in one term in the factorial notation.
- 44. One entry in the following table is incorrect and *y* is a cubic polynomial in *x*. Use the difference table to locate and correct the error.

х	0	1	2	3	4	5	6	7
У	25	21	18	18	27	45	76	123

45. The following table gives the values of y which is a polynomial of degree five. It is known that f(x) is in error.

х	0	1	2	3	4	5	6	7
у	25	21	18	18	27	45	76	123

46. Find the missing term in the table:

X	2	3	4	5	6
У	45	49.2	54.1	-	-67.4

47. Find the missing terms in the following data.

	х	45	50	55	60	65
ĺ	y	3	-	2	-	-2.4

48. Assuming that the following values of y belong to a polynomial of degree 4, compute the next three values.

X	0	1	2	3	4	5	6	7
y	1	-1	1	-1	-	-	1	1

49. Find the sum to *n* terms of the series.

(a)
$$2.3.4 + 3.4.5 + 4.5.6 + \cdots$$

(b)
$$\frac{1}{3.4.5} + \frac{1}{4.5.6} + \frac{1}{5.6.7} + \cdots$$

(c) $1^3 + 2^3 + \cdots + n^3$.

(c)
$$1^3 + 2^3 + \cdots + n^3$$

50. Prove Montmort's theorem that

$$y_0 + y_1 x + y_2 x^2 + \dots \infty = \frac{y_0}{1 - x} + \frac{x \Delta y_0}{(1 - x)^2} + \frac{x^2 \Delta^2 y_0}{(1 - x)^3} + \dots \infty.$$

Hence find the sum of the series

$$1.2+2.3x+3.4x^2+\cdots\infty.$$

51. Using Montmort's theorem find the sum of the series

(a)
$$1.3 + 3.5x + 5.7x^2 + 7.9x^3 + \cdots \infty$$
.

(b)
$$1^2 + 2^2x + 3^2x^2 + 4^2x^3 + \cdots \infty$$
.

52. Match the following:

$$\begin{array}{|c|c|c|} \hline E\nabla & \frac{\Delta+\nabla}{2} \\ hD & \Delta-\nabla \\ \nabla\Delta & \Delta \\ \mu\delta & -\log(1-\nabla) \\ \hline \end{array}$$
